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Surface forces, undulating bilayers, and nuclear-spin relaxation
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Nuclear-spin relaxation due to bilayer undulations in amphiphile-water systems has previously been inter-
preted in terms of the elastic bending modes of a freely fluctuating bilayer. Generalizing the relaxation theory
to include the effect of the compressional stiffness of a multibilayer system, we show that the spin relaxation
depends on, and hence provides information about, the interactions between the bilayers.

PACS number(s): 61.30.—v, 68.10.—m, 33.25.Bn, 87.22.Bt

Out-of-plane fluctuations of amphiphilic bilayers in the
lamellar phase of surfactant-water systems and in multila-
mellar phospholipid-water systems have recently attracted
considerable interest [1-3]. Since these fluctuations are con-
trolled by the bilayer bending rigidity and the interactions
between the bilayers, their study can provide information
that is vital to the understanding of microstructure and phase
behavior in these complex fluids. Experimental data on bi-
layer fluctuations have come mainly from studies of scatter-
ing and nuclear-spin relaxation. Spin relaxation rates from
lamellar systems have been determined over a wide fre-
quency range using field-cycling [4,5] or pulse-train [6-9]
techniques, and at zero frequency using the transverse relax-
ation rate [10,11]. The existing theory [12] relating spin re-
laxation rates to bilayer fluctuations is valid only in the high-
frequency regime where bilayer interactions can be ignored.
We present here a more general theory, based on the full
Landau-Peierls—de Gennes Hamiltonian, showing that the
independent-bilayer theory is not applicable under typical
experimental conditions. Spin relaxation rates can thus pro-
vide information on bilayer interactions.

Within the regime of the conventional Bloch-Wangsness-
Redfield perturbation theory of spin relaxation [13], the ef-
fect of bilayer fluctuations on the spin relaxation is de-
scribed, to second order in the bilayer deformation, by the
time correlation function

G(T)=<nL(0)'nl(T)>' 1

Here n, is the projection of the bilayer normal (director) on
the lateral base plane, related (to leading order) to the verti-
cal (along the optic axis) bilayer displacement, u, as
n, = —V  u. After a spatial Fourier transform of u, one ob-
tains

G(1)=2 ¢ (la(q)|*)exp(—7/7y). @)
q

The time constant for the dissipative decay of the indepen-
dent fluctuation modes is 74=— (qiD)‘], with an effective
“diffusion coefficient” D=D,+D, accounting for vis-
coelastic bilayer fluctuations (D,) and molecular transla-
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tional diffusion in the bilayer plane (D,). Although D, de-
pends on q in general [14], we consider here only the pure
undulation mode (g,=0), for which D,=K; /7 with K, the
curvature-elastic splay modulus and 7 the solvent viscosity.
The frequency-dependent spin relaxation rates are deter-
mined by a spectral density function J(w), which is the co-
sine transform of G(7), i.e.,

1@=32 i@ ey O
q q

The phenomenological static description of thermally ex-
cited elastic distortions in the smectic A phase, as developed
by Landau, Peierls, and de Gennes, is based on the Hamil-
tonian [15]

_[ou\?
H= %f dr B(—) +K1(Vfu)2}, @)
14 0z
where B and K are the macroscopic elastic constants asso-
ciated with longitudinal compression (at constant chemical
potential) and director splay, respectively. In the presence of
a magnetic field, as in an NMR experiment, Eq. (4) must be
supplemented with a magnetic Hamiltonian [16]. If the mag-
netic interaction is neglected (cf. below), a Fourier decom-
position of Eq. (4) yields with the equipartition theorem [15]

kyT
Vid(qy/€,+q1/d?)’

(la(q)?)= (5)

where we have introduced the (average) bilayer repeat dis-
tance d, the bilayer bending rigidity k=dK,, and the trans-
verse orientational correlation length (or patch length)
£,=(d’K,/B)"™, which defines the crossover from a short-
wavelength regime (q, §,> 1) with independent bilayer fluc-
tuations to a long-wavelength regime (g, £,<1) with
coupled bilayer fluctuations [17].

The theoretical description of bilayer fluctuations presents
some subtleties due to the many length scales involved in the
problem: the sample dimensions L, and L, , the bilayer pe-
riod d, the lateral continuum cutoff length a (with a? of the
order of the amphiphile cross-sectional area), the patch
length £, (a measure of the relative importance of bilayer
rigidity and compressional stiffness), and the magnetic co-
herence length [15] £&,,=(uoK;/|Ax|B?*)'? (a measure of
the relative importance of bilayer rigidity and magnetic
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torque). Whereas a completely general treatment entails con-
siderable mathematical complexity, simple analytical results
can be obtained by noting that only a small fraction of the
six-dimensional parameter space is experimentally relevant.
Thus, for example, the magnetic interaction adds to the de-
nominator of Eq. (5) a term qi/ 5,2,,, which can be neglected
if §12,<27r§,2,,/N , with N=L, /d the number of bilayers in the
stack.

An interesting result follows directly from Eq. (3): the
zero-frequency spectral density J(0) is directly proportional
to the mean-square bilayer displacement,

J(0)=(u*)/D. (6)

Provided that a%/ m<< §§<Li /N, we obtain from Egs. (5) and
(6)

kgT
8kw,

J(0)= InN, (7

where we have introduced the “patch frequency”
wp=7rD/§f,, which is essentially the inverse of the time
taken to “diffuse” one orientational correlation length. It
should be noted that J(0) does not diverge in the thermody-
namic limit (as one might expect for diffusion in two dimen-
sions); when the sample thickness L,=Nd is sufficiently
large the inequality §12,<27r§,2,,/N is no longer valid and the
magnetic interaction, which then limits the layer fluctuations,
must be included. For all practical purposes, however, Eq.
(7) is valid.

Inserting Eq. (5) into Eq. (3) and converting the sum to a
three-dimensional integral, we obtain for the spectral density
function

kBTl 1+w/wpl
8kw, n 1/N+w/wp"

J(w)= (®)

This result, like its =0 limit in Eq. (7), is valid provided
that

a?/m<gL<min(2wE, L1)/N, (9)

which is true in virtually all cases of interest. In addition, we
have assumed that w<<72D/a?, since at higher frequencies
[where J(w)*w 2] bilayer fluctuations do not contribute
significantly to spin relaxation. The patch frequency w), de-
fines the crossover from a low-frequency regime (w<wp)
with coupled bilayer fluctuations to a high-frequency regime
(w>w,) with independent bilayer fluctuations. In the high-
frequency regime, Eq. (8) takes the remarkably simple form

kgT

J(w)=8Kw,

(10)

showing that, in this regime, J(®) is not only independent of
the bilayer coupling but also independent of the rate of bi-
layer fluctuations and lateral molecular diffusion.

The spectral density function in Eq. (8) governs the spin
relaxation probed in a field-cycling experiment. The quadru-
polar echo train experiment (as applied to nuclei of spin
I=1) yields a slightly different (effective) spectral density
function [18]
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FIG. 1. Field-cycling, J(w), and pulse-train, J (w), spectral
density dispersion in lamellar phase with N= 10* bilayers in the
stack. The dashed lines correspond to the 1/w limiting law, which is
obeyed at frequencies w much larger than the patch frequency

(l)p.

8 _ .
Je(w)=}—22 Q2n+1)"((2n+1)ww/2), (1)
=0

n

where w now refers to the pulse train frequency. Combina-
tion with Eq. (8) yields

J ()=

2)

kgT&: &
z g”E (2n+1) 2 In
=0

[ 1+Q, | 1
7T3KDn_ )’ (

UN+Q,

with Q,=(2n+1)7w/(2wp). In the =0 limit Eq. (12)
coincides with Eq. (7), as expected. In the high-frequency
(w>w),) regime, Eq. (12) reduces to

akBT

8kw

Jo(w)= , (13)

which differs from Eq. (10) by a factor

16
a= ?E (2n+1) 3=~0.5428.
n=0

Figure 1 shows the dispersion of J(w) and J (w) as de-
scribed by Egs. (8) and (12), along with the corresponding
high-frequency limiting forms, Eqs. (10) and (13).

In all reported studies of nuclear-spin relaxation due to
bilayer fluctuations the coupling between adjacent bilayers
was ignored. If the compressional term B(du/ dz)* in the
Hamiltonian, Eq. (4), is omitted one obtains a fluctuation
spectrum (|ii(q)|?) of the g * form characteristic of a freely
fluctuating membrane [1]. Inserting this into Eq. (3) we ob-
tain (for o< w2D/a?) the spectral density function

kgT
dTKkw

J(w)= arctan( / ), (14)

with o, =72D/L? . For w>w, this reduces to Eq. (10),
which is the result obtained by Marqusee, Warner, and Dill
[12]. The w=0 limit of Eq. (14) is
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kTL} d*v 12
= =m(D,+D)| = 5= : 1
J(0)=—=—. (15) wp=m(D,+D)| === d 17)
o=

The spectral density function in Eq. (14), or the corre-
sponding pulse-train version obtained from Egs. (11) and
(14), has been used in all recent relaxation dispersion studies
of bilayer fluctuations, [4—8] and its limiting form, Eq. (15),
has been used to interpret transverse relaxation [6,7,9,19]. In
these studies, however, L, was not identified with the lateral
sample dimension but was instead regarded as a (physically
obscure) “long-wavelength cutoff of the elastic modes” [20].
To interpret the relaxation dispersion, previous authors have
used either [4,5] the high-frequency limit of Eq. (14), i.e.,
Eq. (10), or a numerical finite-difference algorithm [6—8]
which, under the conditions of interest, is equivalent to Egs.
(11) and (14). As is evident from Eq. (14), the relaxation
dispersion is fully determined by two parameters («/kzT and
w; ) in the decoupled-bilayer theory. Hence, it is not possible
to separately determine D and L, (or the “cutoff length”’), as
some authors claim to have done [6-8].

In deriving Eqgs. (14) and (15) we neglected the interac-
tion of the anisotropic diamagnetic susceptibility of the
lamellar phase with the external magnetic field. Including
this magnetic interaction [16] in the Hamiltonian, we obtain
in place of Eq. (15)

kBTL_Lgm

O=570

(16a)

for a diamagnetically negative phase oriented perpendicular
to the magnetic field, and

J(0)=

k 2

2akD " wén,

for a diamagnetically positive phase oriented parallel to the
field. The zero-frequency spectral density thus depends on
the strength (and orientation) of the magnetic field.

If bilayer coupling cannot be neglected, the spin relax-
ation should be described by Egs. (7) and (8) rather than by
Eqgs. (14)—(16). As we have shown, the spectral density func-
tion J(w) is unaffected by bilayer coupling only at frequen-
cies @ much larger than the patch frequency w,,. It is thus
imperative to estimate the magnitude of w,, for the systems
of interest.

Using the expressions for w, and £, given above and
expressing the compression modulus B in terms of the bi-
layer interaction per unit area, V(s), we obtain

If V includes several interactions, w, is dominated by the
“stiffest” interaction, having the largest curvature at the
equilibrium separation d.

In dilute lamellar phases built from electroneutral
(or salt-screened) bilayers, the steric repulsion [21]
V(s)=(3m%/128)(ksT)*/[ k(s — 8)*] dominates, and

_ 37%T(D,+D,)
PT 8k(d—6)%

) (18)
with & the bilayer thickness. With parameters typical for di-
lute lamellar surfactant systems [3,16], «=2.5kzT, d=200
A, =35 A, and D,~D,~5X 10719 m?2s™!, we obtain
w,~5X10% rad s .

For neutral phospholipids [such as di-myristoyl-
phosphatidyl-choline (DMPC)] under typical conditions
(6=35A,d=60 A, k~20kpT ) it appears that the compres-
sional stiffness is due mainly to the so-called hydration re-
pulsion [22] V(s)= Vyexp[—(s— 8)/\,], whence

_ w(Du+D,)( Vo)”2 (d— )
PN, « | P a2,

w (19)
Adopting the typical values [22] Vo=5ksT A2, \,=2 A,
and D,~3x10"° m?~'>D,, we obtain w,~5x10?
rads L.

In both of these examples, the patch frequency w,, is well
above the frequency range (w<10° rads ~!), where bilayer
fluctuations contribute significantly to spin relaxation. It ap-
pears, therefore, that bilayer coupling is important for the
spin relaxation under all experimentally relevant conditions.

Finally, we note that Blinc et al. [23] have presented an
expression for the spectral density function in a smectic A
phase, which in our notation reads

kyT

8Kwp

J(w)=

In[1+(w,/w)?], (20)

with w,=7?D/a? the high-frequency cutoff. This expres-
sion differs qualitatively from our result, Eq. (8); in particu-
lar, it diverges for w=0. Although Eq. (20) was apparently
derived on the basis of the same Hamiltonian that is used
here, Eq. (4), no details of the derivation were given.
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